About The Event
A 5-hour workshop taught by Serge Herzog, Ph.D.
Predictive analytics workshop series discount!
Register for this along with Student success prediction at your fingertips: Developing online dashboards with Microsoft Power BI© for only $350 (would normally cost $450 for both). If you are interested in the workshop series, email us at mail@percontor.org for discount codes.
Overview:
The purpose of this workshop is to teach institutional research, assessment, and evaluation professionals how to effectively build and implement a predictive model to identify students at risk of dropping out using standard regression methods with SPSS. Instruction will be delivered in a hands-on format, offering an interactive step-by-step model-building process that allows participants to develop their own prediction model, using preloaded data that mimics information available with the typical college enrollment matriculation system.
Expected outcomes:
By the end of the workshop participants will be able to:
- Develop a conceptual understanding of how predictive models developed can improve institutional effectiveness with a focus on student retention;
- Learn how to set up a matriculation system (or census warehouse) data file in IBM-SPSS that can be used to develop a predictive statistical model to identify students at risk;
- Learn how to use historical data to ‘automatically’ develop predictor coefficients to estimate (score) the dropout risk for students in future cohorts; and
- Learn how to translate the student dropout risk into a relative percentile risk score to assist student support services with ‘actionable’ information in a timely fashion.
Pricing and schedule:
Series discount – Register for this along with Student success prediction at your fingertips: Developing online dashboards with Microsoft Power BI© for only $350 (would normally cost $450 for both). If you are interested in the workshop series, email us at mail@percontor.org for discount codes.
We offer $50 discounts for graduate students and $25 discounts for multiple workshop enrollments (cannot be combined with other discounts, including the workshop series price above).
Time permitting, Dr. Herzog will also answer questions about participants’ specific projects. Participants can ask questions via chat, microphone, or telephone. In order to allow sufficient time for questions, the number of workshop participants is limited to 30.
Who should attend?
The target audience is educational researchers who are familiar with logistic regression and wish to use it to develop prediction models to estimate student dropout risk or other student or educational outcomes that are categorical in nature. This is an applied course, so no advanced math skills are required beyond an understanding of logistic regression and its associated statistical output and model fit indicators (which will be explained in the workshop).
Attendees should be proficient in the basic use of and have access to at least version 20 of IBM-SPSS, with the regression module, in order to participate in hands-on exercises to develop a prediction model with furnished data and syntax files. You may access a 14-day free trial of SPSS here.
If you are unfamiliar with logistic regression, we encourage you to take our logistic regression workshop.
Agenda:
- Introduce the power of predictive analytics (including examples of forecasting data used in improving student success and college operations).
- Examine elements needed and available at the start/middle of the semester to predict student dropout at end of the semester (including pre-college academic preparation, student socio-demographic data, income/financial aid profile, semester course data, on-campus housing, and campus engagement data).
- Conduct exploratory data analysis: Discussion of variable selection, variable coding, missing data imputation, and composite variable construction to achieve maximum model parsimony.
- Discuss regression model: Prediction versus variance explanation in logit analysis.
- Develop training dataset using historical data to generate predictor coefficients for future data (outcome estimation for future cases)
- Estimate outcome probability for future data (cohorts) Identify statistical outliers and develop an ROC curve to maximize the correct classification rate.
- Choose a model with optimal balance in the correct classification.
- Transform outcome probability for each case (student) into ‘actionable information’.
- Discuss how predictive analytics improves organizational productivity and outcomes
About the instructor:
Serge Herzog, Ph.D., is the Vice President of Institutional Effectiveness at Rocky Mountain University (RMU). Prior to joining RMU, Dr. Herzog was the Director of Institutional Analysis at the University of Nevada, Reno since 2001. His research has been covered in the Chronicle of Higher Education, the University Business Magazine, and Campus Technology Magazine among others. Most recently, he co-edited (with Nicolas Bowman) Methodological Advances and Issues in Studying College Impact (New Directions for Institutional Research) San Francisco: Jossey-Bass, 2014.